Oxford Cambridge and RSA

GCSE (9-1)

Physics A (Gateway)

Unit J249F/01: Foundation Tier - Paper 1
General Certificate of Secondary Education

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
A	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a AO3.1b Analyse information and ideas to interpret. AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements. AO3.2b Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to develop experimental procedures.

For answers to Section A, if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

Question Answer		Marks	AO element		
1		A \checkmark	1	1.1	
2		D \checkmark	1	2.2	
3		C \checkmark	1	2.2	
4		B \checkmark	1	1.1	
5		C \checkmark	1	1.2	
6		D \checkmark	1	2.1	
7		B \checkmark	1	2.2	
8		B \checkmark	1	2.1	
9		B \checkmark	1	2.1	
10		C \checkmark	1	2.1	
11		D \checkmark	1	1.2	
12	B \checkmark	1	1.2		
13	C \checkmark	1	2.1		
14	C \checkmark	1	1.2		
15		B \checkmark	1	1.2	

Question			Answer	Marks	AO element	Guidance
16	(a)	(i)	TV \checkmark	1	3.2 b	
		(ii)	Light bulb \checkmark	1	3.2 b	
	(b)		LDR Thermistor Operating a heating system Monitoring the position of a door resistor Turning on lights when it gets dark	2	2×2.1	1 mark for each correct link
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $10000000(\mathrm{~J})$ award 4 marks $\begin{aligned} & \text { Rearrange to energy }=\text { charge } \times \text { potential difference } \\ & 44000 \times 230 \checkmark \\ & 10120000 \checkmark \\ & 10000000(2 \mathrm{sf})(\mathrm{J}) \checkmark \end{aligned}$ OR Substitute correctly 44000 (C) = energy $\div 230(\mathrm{~V}) \checkmark$ Rearrange to energy $=44000$ (C) $\times 230(\mathrm{~V}) \checkmark$ $=10120000(\mathrm{~J}) \mathrm{v}$ $=10000000(2 \mathrm{sf})(\mathrm{J}) \checkmark$	4	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	Fourth mark is for correct rounding If answer line has 10120000 (J) award 3 marks m.p. 2 can include m.p. 1 if equation not written m.p. 2 can include m.p. 1 as above
	(d)	(i)	Error: only positive charges can move Correction: negative charges/electrons can move	2	$\begin{gathered} \hline 3.2 \mathrm{a} \\ 1.2 \\ \hline \end{gathered}$	ALLOW indication on the student's notebook
	(d)	(ii)	4A \checkmark	1	1.2	

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
17	(a)	(i)	Any two from: The old model has no protons / ORA \checkmark The old model has no neutrons / ORA \checkmark There is no nucleus in the old model / ORA \checkmark The electrons are in fixed positions in the old model / ORA The positive particles are in a nucleus in the current model \checkmark The negative particles/electrons are outside / surround the nucleus in the current model	2	2×1.1	
		(ii)	Any two from: new evidence more experiments completed previous model couldn't explain new observations \checkmark	2	2×1.1	ALLOW mention of Rutherford, Geiger/Marsden
	(b)	(i)	All points correctly plotted line of best fit drawn correctly \checkmark	2	2×1.2	± 0.5 small squares e.c.f. plotting errors
		(ii)	As the mass increases/goes up the density increases \checkmark (Direct) proportionally \checkmark	2	$2 \times 3.1 \mathrm{a}$	ORA Needs word 'proportion(al)' or equivalent e.g. density \div mass is same

Question			Answer	Marks	AO	Guidance
18	(a)	(i)	$5250\left(\mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)^{\checkmark}$	1	1.2	
		(ii)	Any three from: specific heat capacity increases with temp rises \checkmark specific heat capacity increases with energy supplied \checkmark temp rise increases with energy supplied \checkmark different amounts of energy were supplied \checkmark all of the s.h.cs. are close together (within 5%) / within the range 5000-5500 \checkmark the experiment was repeated / done 3 times \checkmark	3	$3 \times 3.2 \mathrm{~b}$	ALLOW other reasonable observation, e.g. s.h.c. increases with longer heating
	(b)	(i)	Any two from: more energy (than expected) heated the water \checkmark energy losses must have occurred/not all the energy went into the water \checkmark energy transferred to environment /AW \checkmark	2	$2 \times 3.2 \mathrm{~b}$	ALLOW heat for energy
		(ii)	Any two linked answers from: part of the immersion heater is out of the water \checkmark make sure the heater is fully in the water/use a larger/deeper beaker beaker is not lagged/insulated \checkmark lag/insulate the beaker \checkmark there is no lid on the beaker \checkmark put a lid on the beaker \checkmark the temperature rises are quite small \checkmark apply more energy to the water \checkmark insufficient data \checkmark take more readings \checkmark	4	$\begin{aligned} & 3.3 \mathrm{a} \\ & 3.3 \mathrm{~b} \\ & 3.3 \mathrm{a} \\ & 3.3 \mathrm{~b} \end{aligned}$	

	tion	Answer	Marks	AO element	Guidance
$\begin{aligned} & 19 \\ & \left({ }^{*}\right) \end{aligned}$		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed description and comparison of the motion of all four students in terms of distance and time relating speed to distance run AND Calculates the speed of all four students. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Description and comparison of the motion of three students of distance and time OR Calculates the speed of at least three students. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Brief description of the motion of at least three students. OR Calculates the speed of at least one student. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & 2 \times 1.1 \\ & 2 \times 2.2 \\ & 1 \times 3.1 a \\ & 1 \times 3.2 b \end{aligned}$	A01.1 Demonstrate knowledge and understanding of the correct formulae - speed $=$ distance \div time - $v=s \div t$ - evidence of calculation AO2.2 Apply knowledge and understanding of the motion of the four students - Race B is a longer distance than race A - Race B and C are the same distance - Students B \& C take different amounts of time - Student D takes the longest time - Race D is the longest distance - Race A is the shortest distance - Student A speed $=15 \div 6=8.3 \mathrm{~m} / \mathrm{s}$ - Student B speed $=100 \div 15=6.7 \mathrm{~m} / \mathrm{s}$ - Student C speed $=100 \div 14=7.1 \mathrm{~m} / \mathrm{s}$ - Student D speed $=200 \div 31=6.5 \mathrm{~m} / \mathrm{s}$ AO3.1a \& AO3.2b Analyse information to interpret and draw conclusions about the motion of the four students - Race B is twice the length of race A, but time is more than twice that of race A - $\quad C$ is faster than B as the time is shorter (for the same distance) - As race length increases, average speed decreases

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 0}$ | (a) | Any one from:
 electrostatics \checkmark
 gravity/weight \checkmark
 magnetism \checkmark
 (normal) contact force \checkmark
 friction \checkmark | $\mathbf{1}$ | | Allow 'static electricity' but not just 'static' |

Question			Answer	Marks	AO element	Guidance
21	(a)	(i)	```moment = force x distance } clockwise moment = 800 (Nm) anti-clockwise moment = 1000(Nm)\checkmark```	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW 2 marks (total) if clockwise and anticlockwise moments are reversed Correct calculation of either moment implies correct equation so gets m.p. 1 also
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.6 (m) award 3 marks (anti-clockwise moment) $500(\mathrm{~N}) \times$ distance $=800(\mathrm{~N} \mathrm{~m}) \checkmark$ distance $=800 \div 500 \checkmark$ $=1.6(\mathrm{~m}) \quad \checkmark$	3	$\begin{aligned} & 1.2 \\ & 2.2 \\ & 2.2 \end{aligned}$	E.c.f. clockwise moment from (a)(i) for 800 (N m) If child B chosen, giving $1000 \div 400=2.5(\mathrm{~m})$, award 2 marks (loses m.p.1)
	(b)	(i)	```FIRST CHECK THE ANSWER ON ANSWER LINE If answer = \(\mathbf{1 0 0}(\mathrm{Pa})\) award \(\mathbf{3}\) marks pressure \(=\) force \(\div\) area \(=10 \div 0.1 \checkmark\) \(=100(\mathrm{~Pa}) \quad \checkmark\)```	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	
		(ii)	at right angles/perpendicular/ 90° (to the plunger)	1	1.1	ALLOW to the left opposite to the force from the plunger

Question			Answer	Marks		Guidance
22	(a)	(i)	variable resistor \checkmark	1	1.2	ALLOW rheostat IGNORE potentiometer
		(ii)	Control / change / vary / increase / decrease / AW the resistance / current in the circuit \checkmark	1	1.2	DO NOT ALLOW merely "changes the voltage or changes p.d.' BUT ALLOW: changes the potential difference or voltage across (component) $\mathbf{X} \checkmark$
	(b)	(i)	(filament) bulb / lamp \checkmark	1	3.2a	
		(ii)	gradient / slope (of graph) changes (as potential difference / voltage changes) idea of increasing resistance (with more p.d.) / ORA \checkmark idea of increasing temperature / AW \checkmark	3	$\begin{gathered} \hline 3.1 \mathrm{a} \\ 1.2 \\ 2.2 \end{gathered}$	ALLOW 'graph / line / slope levels off' Resistance increases with greater temperature
-	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{4}(\mathrm{V})$ award $\mathbf{2}$ marks $\begin{array}{\|l} 0.25 \times 16 \\ 4(V) \checkmark \end{array}$	2	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1 (W) award 3 marks $\begin{aligned} & P=I V \checkmark \\ & P=0.25 \times 4 \checkmark \\ & P=1(W) \checkmark \end{aligned}$ OR $\begin{aligned} & P=I^{2} R \checkmark \\ & P=0.25^{2} \times 16 \\ & P=1(W) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \\ & \\ & \\ & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW e.c.f. from part ci

Question		Answer	Marks	AO element	(a) $\mathbf{2 3}$ (i) Any three from: place the compass onto the card or near to the wire (and turn on the current) \checkmark plot / observe the direction of the compass / needle \checkmark repeat idea of tip-to-tail / plotting onto the card \checkmark repeat at different distances from the centre \checkmark	$\mathbf{3}$

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

